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Abstract

A constitutive model is developed to describe the creep response of polycrystalline metals and alloys with di�erent
behavior in tension and compression. A second-order damage tensor is introduced in order to describe the creep

damage under nonproportional loading in nonisothermal processes. The thermodynamic formulation of the creep
equation and the damage evolution equation is used to study the creep behavior and creep damage in the initially
isotropic materials. The determination of the material parameters in the proposed equations is demonstrated from a

series of basic experiments outlined in this paper. The results generated from the model are compared with those
obtained from experiments under uniaxial nonproportional and multiaxial nonproportional loading for both
isothermal and nonisothermal processes. # 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Since the pioneering works of Kachanov (1958) and Rabotnov (1963), quite a large number of papers

on continuum creep damage mechanics have been published. However, the creep damage analysis for

materials with di�erent behavior in tension and compression has received little attention up to now even

though some damage models for materials have been proposed for the case of elastic deformation

(Chaboche, 1992, 1993; Gambarotta and Lagomarsino, 1993; Lubarda et al., 1994; Hansen and

Schreyer, 1995; Halm and Dragon, 1996).

The creep behavior of a large class of polycrystalline materials, such as light alloys, high strength
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steels, gray cast irons, polymers, rock salt, ceramic polycrystal is the result of a number of
micromechanical processes, such as the motion of defects, known as dislocations; vacancy di�usion
limited by the di�usivity of the grain boundary; grain boundary sliding; vacancy di�usion limited by the
rate of material transport along the void walls; migration and recrystallization, etc. (Garofalo, 1965;
Tetelman and McEvily, 1967; Boyle and Spence, 1983; Rashid, 1992). The creep deformation of
materials is accompanied by the growth of internal damage. There are di�erent mechanisms of creep
damage in materials (Evans, 1984; Riedel, 1987; Cocks and Leckie, 1987; Tvergaard, 1995). In the
present paper, one considers creep damage that is related to creep deformation by climb-controlled
dislocation motion, and to nucleation and growth of planar microcracks at the grain boundaries. That
type of creep damage is the most common one for polycrystalline materials at middle and high
temperatures and for engineering structures, when the design life of a component is long.

The features of creep and creep damage of polycrystalline materials may be investigated
experimentally. Among these features are the following:

1. di�erent creep properties in tension and compression;
2. damage induced anisotropy;
3. di�erent damage development in tension and compression.

Creep behavior for many polycrystalline materials depends on the loading type (Johnson et al., 1956;
Rabotnov, 1969; Tilly and Harrison, 1972; Zolochevskii, 1982; Rubanov, 1987; Chaboche, 1988;
Zolochevsky, 1991; Altenbach et al., 1995). This dependency is mainly determined while comparing
creep curves obtained under uniaxial tests in tension and compression at the same temperature using
specimens of the same orientation. In this case, the absolute values of creep strain, chosen for one and
the same absolute value of stress and for one and the same value of time, are essentially di�erent
depending on the loading type. Thus, one has two di�erent creep curves (one in tension, and the other
in compression). The maximum di�erence in creep behavior between tension and compression is related
to the tertiary phase on the creep curves and to the corresponding creep rupture times.

On the other hand, the creep behavior is associated with a directionality of microcracks and with
related damage anisotropy. If in the reference state of the material all the microcracks are randomly
distributed, than under loading conditions a preferential microcrack orientation may exist. In many
cases of dislocation creep of materials, the grain boundary microcracks generate and grow on planes
perpendicular to the direction of the maximum positive principal stress (Johnson et al., 1956; Hayhurst,
1972; Hayhurst et al., 1980; Chen and Argon, 1981; Burger and Wilkinson, 1985). Thus, creep behavior
of damaged materials is anisotropic even in the case of initial isotropy. In this regard, the creep
constitutive equation must take into account the damage induced anisotropy.

Finally, the microcracks existing under creep conditions can be open (active) or closed (passive). For
example, a passive damage state may occur under uniaxial compression. In other words, there is a
di�erent damage development in tension and compression, and a di�erent orientation of microcracks
under tension and compression. For the case of uniaxial tension, microcracks run perpendicular to the
axis of loading (Johnson et al., 1956; Hayhurst, 1972; Burger and Wilkinson, 1985). However, under
uniaxial or triaxial compression, microcracks tend to evolve and propagate in the minimum compressive
stress direction (Davies and Dutton, 1966; Evans, 1984; Chan et al., 1994). A more complex picture,
which is related to the closure of already existing microcracks and appearance of new ones in the
perpendicular direction, emerges during the process of nonproportional loading from uniaxial tension to
uniaxial compression (Davies and Dutton, 1966; Elber, 1970; Ohji and Kubo, 1988). In this case, the
stress changes sign during loading, the crack closure phenomenon takes place, and the state of
preexisting microcracks changes from open to closed microcracks. Consequently, the constitutive
equation of creep must take into account the unilateral nature of damage and the deactivation
phenomenon.
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In the next sections, the proposed formulation of the theory presents further the development of the
model derived by Betten et al. (1998) and takes into account simultaneously di�erent creep properties in
tension and compression, damage induced anisotropy, and di�erent damage development in tension and
compression. First, it considers the thermodynamic description of the creep behavior for damaged
materials. Second, it extends the theory to nonproportional loading in nonisothermal processes. Finally,
it introduces considerable improvements into the damage model derived by Betten et al. (1998). In this
paper, one proposes the second-order damage tensor for describing creep damage instead of the damage
vector as was earlier presented by Betten et al. (1998). In the following, one will analyze the creep
behavior of initially isotropic materials within the framework of the phenomenological approach for
small strains.

2. De®nition of damage

Let one consider an initially isotropic polycrystalline material, in which creep damage is associated
with dislocation creep, and nucleation and growth of parallel ¯at microcracks. The coinciding
orientation of these parallel surface-like microcracks may be de®ned by a unit vector n. The microcracks
are assumed to be ¯at, i.e. vector n remains constant over the microcrack.

Next, one introduces the second-order tensorial damage variable ooo with components okl as:

ooo � on
 n �1�
Here ``
'' denotes the dyadic product operation, and o is some monotonically increasing scalar
parameter which can be considered as being a measure of the cumulative creep damage and can be
de®ned from relation (1) under the condition n � n � 1 as the ®rst invariant of the damage tensor

o � ooo � �I � oklIkl �2�
where ``�'' denotes the scalar product operation, and I is the second-order tensor with components Ikl �
1 if k � l and Ikl � 0 if k 6� l: This damage parameter o 2 �0, o�� may be useful for describing the
overall creep damage of the material �or0; _or0). Here the dot above o denotes the derivative with
respect to time t. At the reference state, t � 0, one has o � 0, while o � o�, at the instant of failure
with creep.

The concept of using both damage tensor ooo and the scalar damage measure o is similar to the
concept (Krajcinovic, 1985; Lubarda et al., 1994) proposed in the damage model for brittle elastic solids.
The damage tensor that describes the irreversible process of internal structure due to the growth of
already existing microcracks and the appearing of new ones, is macroscopically not measurable by
de®nition (1). On the other hand, the scalar damage parameter represents a measurable quantity.
De®nition for the damage parameter o will be given later in this paper. According to Eq. (1), the
damage tensor ooo is in¯uenced by the current loading type, because the unit vector n changes during the
deformation process. Furthermore, the damage tensor ooo changes even though the damage parameter o
does not. Obviously, the damage tensor ooo is di�erent, when the specimen from the material under
consideration is subjected to uniaxial tension, uniaxial compression or pure torsion, because di�erent
orientations of microcracks in these three tests will give rise to a di�erent damage tensor.

One notes that the second-order tensorial damage variable was used by many authors (Murakami and
Ohno, 1981; Betten, 1993; Matzenmiller and Sackman, 1994) in continuum damage mechanics. The
applications of damage tensors of higher order are given by Chaboche (1982), Onat and Leckie (1988),
Lubarda and Krajcinovic (1993) and Krajcinovic (1996).
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3. Thermodynamic potential

One considers the description of the phenomena of elasticity, creep, damage and thermal e�ects for
initially isotropic polycrystalline materials without creep hardening within the framework of the
thermodynamics of irreversible processes (Lemaitre and Chaboche, 1990; Lemaitre, 1992). In this regard,
the thermodynamic variables may be introduced as follows:

. Observable variables: the total in®nitesimal strain tensor E associated with the Cauchy stress tensor sss,
and the temperature T associated with the entropy density S;

. Internal variables: the thermoelastic strain tensor e associated with the stress tensor sss, the creep strain
tensor eee associated with ÿsss due to the assumption:

E � eee� e �3�
and the second-order tensorial damage variable ooo: Let y be the associated variable for ooo, which will
be derived later in this paper.

One assumes linear thermoelasticity without damage and uncoupling between thermoelasticity and
creep. The free speci®c energy c, taken as the thermodynamic potential, is the sum of two terms: the
thermoelastic part c1 and the creep part c2:

Then some additional comments will be made. First, to establish coupling or uncoupling between the
elastic deformation and the damage evolution, one can resort to qualitative microscopic considerations
(Mou and Han, 1996). From this point of view, one can say that the development of decohesion is
a�ected by the interaction forces between atoms, and, therefore, the elastic deformation is coupled with
the damage growth. Furthermore, climb-controlled dislocation motion has an e�ect on these interaction
forces. On the other hand, from a phenomenological point of view, a creep test of very long duration at
middle and high temperatures produces a signi®cant creep strain during the application of the load, and
very small thermoelastic strain. Therefore, one can neglect the damage development under elastic
deformation and can consider only damage evolution under creep deformation. In other words, since
the thermoelastic part c1 is small in comparison with the creep part c2, the e�ect of damage on c1 will
be disregarded.

Second, the microstructure of the materials under consideration cannot evolve in an unstable way
with the variations in temperature. Therefore, the creep part c2 in the free speci®c energy does not
depend on the variable T. Of course, the temperature may be included in c2 as a parameter.

Thus, the free speci®c energy has the following structure:

c � c1�e, T� � c2�o� �4�
The thermoelastic part of the free speci®c energy can be written as:

c1 �
1

r

�
1

2

ÿ
l0e21 � 2m0e2

�ÿ ÿ3l0 � 2m0
�
a0ye1

�
ÿ c0

2T0
y2 �5�

where e1� tr e�e � �I�eklIkl, e2� tr e2�e � �e�eklekl, ``tr'' denotes the trace of a second-order tensor, r is
the material density that can be considered to be constant, l0 and m0 are Lame's coe�cients, a0 is the
coe�cient of dilatation, c0 is the speci®c heat at constant strain, y � Tÿ T0, T0 is a reference
temperature. The temperature di�erence y is small with respect to T0.

The law of thermoelasticity may be de®ned as:

sss � r
@c
@e

�6�
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Substituting Eqs. (4) and (5) into Eq. (6), one obtains the relation for classical linear thermoelasticity:

sss � l0e1I� 2m0eÿ
ÿ
3l0 � 2m0

�
a0yI �7�

In an analogous manner, one can de®ne the entropy density:

S � ÿ@c
@T

�8�

Using Eqs. (4), (5) and (8), one obtains

S � 1

r

ÿ
3l0 � 2m0

�
a0e1 � c0

T0
y �9�

Let one introduce the creep part c2 in the free speci®c energy as:

c2 �
1

r

�
o� ÿ o � �o

2o�

�
�10�

Taking then into account Eq. (1), and conditions n � n � 1 and oRo�, one obtains that o��o
o� � o2

o� and
o��o
o� Ro�, and therefore, c2 in Eq. (10) is a positive de®ned function for all types of loading. The
associated variable for o is de®ned as:

y � r
@c
@ooo

�11�

Substituting Eqs. (4) and (10) into Eq. (11), one obtains

y � ÿ ooo
o�

�12�

4. Potentials of dissipation

Three independent dissipation potentials must be considered in order to formulate the kinetic
equations describing the evolution of creep, damage and heat. This is because one has di�culty
understanding why phenomena as di�erent as creep dissipation, damage and thermal dissipation should
all derive from a single potential. This approach with multiple potentials is already implied in some
recent papers (Hansen and Schreyer, 1994; Chaboche, 1997).

First, one assumes the existence of a creep potential in the following form:

F1 � s2e ÿ j2
1�_ee, o� � 0 �13�

and

Çeee � l
@F1

@sss
�14�

The equivalent stress se is determined by setting the equivalence of uniaxial and multiaxial stress states
�ser0). _ee is the equivalent creep strain rate �_eer0), and l is a certain scalar multiplier. The equivalent
stress will be de®ned later in this section. The equivalent creep strain rate _ee will be considered as the
scalar which is multiplied by se, and yields the speci®c energy creep dissipation rate
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W � sss � �Çeee �15�

In this regard, one has

W � se_ee �16�

Eq. (13) describes a certain surface in space for the stress tensor components. The ®rst term in Eq. (13)
re¯ects the form of this surface, and the second one describes the current position of the surface for
®xed values of _ee and o:

The damage tensor ooo must be introduced into the creep potential (13) in order to describe damage
induced anisotropy. Taking into account that the scalar damage parameter o is already introduced into
a second term of the creep potential (13), one can assume that the description of damage induced
anisotropy in a ®rst term of the creep potential is related only to the orientation n of the microcracks.
Therefore, the equivalent stress se is considered here as an isotropic invariant of the stress tensor sss and
the dyadic product n
 n, i.e.

se � se�sss, n
 n� �17�

Then the integrity basis for the two symmetric second-order tensors considered here, consists of the
following ®ve invariants (Spencer, 1971):

I1 � tr sss � sss � �I � smm,

I2 � tr sss2 � sss � �sss � sklslk,

I3 � tr sss3 � �sss � sss� � �sss � sklslmsmk,

I4 � tr
��n
 n�sss� � n � sss � n � nksklnl,

I5 � tr
�
�n
 n�sss2

�
� n � sss2 � n � nksklslmnm: �18�

Neglecting the in¯uence of invariants I3 and I5 as second-order e�ects, one can introduce the linear

s1 � BI4 �19�

and quadratic

s22 � AI 2
1 � CI2 �20�

scalar invariant functions. Here A, B and C are material parameters dependent on the temperature. The
equivalent stress can be introduced as:

se � s2 � as1 �21�

where a is a constant coe�cient which takes into account the speci®c weight for the linear scalar
function in the expression (21). It is seen that in de®nition (21) the equivalent stress is a homogeneous
function of the stresses.

Under conditions
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A � ÿ1
2
, C � 3

2
, a � 0 �22�

expression (21) includes as a particular case the expression for the equivalent stress

se � si �23�
in the well-known Huber-von Mises-type potential for the case of isotropic materials with the same
behavior in tension and compression. Here,

si �
������������
3

2
s � �s

r
�24�

is the stress intensity, and

s � sssÿ 1

3
I1I �25�

is the stress deviator.
The representation of the equivalent stress in the form given by Eq. (21) is associated with the

combined action of the two deformation mechanisms. The ®rst term in Eq. (21), which reduces to the
stress intensity given by Eq. (24) under the ®rst and second conditions in Eq. (22), represents the
generalization of the stress intensity in the case of the compressible materials under creep conditions and
re¯ects the in¯uence of the movement of dislocations on the creep behavior. The second term in Eq.
(21) models the e�ect of microcracks with preferential orientation on the creep behavior.

One notes that an approach proposed here with the separate use of the scalar damage parameter o
and the dyadic product n
 n in the creep potential (13) is contrary to an approach (Hayakawa and
Murakami, 1997) in which the second-order damage tensor itself is introduced into a potential.

One may now determine the creep strain rate tensor according to the normality rule (14). By making
use of Eq. (21) and di�erentiating, one obtains the following equation

Çeee � 2lse

�
@s2
@sss
� a

@s1
@sss

�
�26�

Taking then into account the following relations

@s2
@sss
� AI1I� Csss

s2
,
@s1
@sss
� Bn
 n �27�

obtained from Eqs. (18)±(20), one arrives at the following equation

Çeee � 2lse

�
AI1I� Csss

s2
� aBn
 n

�
�28�

By performing the scalar product of the right- and left-hand sides of Eq. (28) with sss, one de®nes the
speci®c energy creep dissipation rate given by Eq. (15) as follows:

W � 2ls2e �29�

Comparing Eqs. (16) and (29), one has

2lse � _ee �30�
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Substituting then relation (30) into Eq. (28), one obtains the constitutive equation

Çeee � _ee

�
AI1I� Csss

s2
� aBn
 n

�
�31�

for creep deformation related to dislocation creep and to the growth of the parallel planar microcracks.
The function _ee in Eq. (31) may be determined from Eq. (13) as some function of the equivalent stress
and of the scalar damage parameter o through the creep curves that are obtained from basic
experiments. For example, one may write:

_ee � v�se�ÿ
1ÿ ooo

o�
�m �32�

A power relation

v�se � � ske �33�

a hyperbolic sine rule

v�se � � sinh

�
se

d

�
�34�

or an exponential relation

v�se � � exp

�
se

p

�
�35�

are possible for the function v�se�: Here m, k, d and p are temperature dependent material parameters.
One now assumes the existence of a damage potential in the following form:

F2 � y2e ÿ j2
2� _o, se� � 0 �36�

and

Çooo � m
@F2

@y
�37�

Here ye is determined as the equivalent variable for y �yer0), and m is a scalar multiplier. The
equivalent variable ye will be de®ned later in this section. Eq. (36) describes a certain damage surface in
space for the components ykl: The ®rst term in Eq. (36) re¯ects the form of this damage surface, and the
second one describes the current position of the surface for ®xed values of _o and se:
One now introduces the variable ye in the damage potential (36) as follows:

ye � 1� n � y � n �38�

Substituting relation (12) into Eq. (38), it is easy to show that

ye � 1ÿ n � o � n
o�

�39�

Taking then into account Eq. (1), and conditions n � n � 1 and oRo�, one has
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ye � 1ÿ o
o�

�40�

and therefore yer0: In this regard, ye is always non-negative function.
One may determine the damage rate tensor according to the normality rule (37). Using Eqs. (36) and

(38), and di�erentiating, one obtains the following equation

_o � 2myen
 n �41�
On the other hand, di�erentiating Eq. (2), one has

_o � _o � �I �42�
By performing the scalar product of the right- and left-hand sides of Eq. (41) with I and using Eq. (42),
one obtains

_o � 2mye �43�
Substituting relation (43) into Eq. (41), one obtains the damage evolution equation

_o � _on
 n �44�
Taking then into account Eq. (1) and di�erentiating them, one may see that the damage evolution
equation (44) is formulated under condition that the damage ¯ux _o depends on the rate of change of
the scalar damage parameter and does not depend on the variations of the unit vector n. This condition
can be assumed for materials without creep hardening under proportional and nonproportional loading.

The function _o in Eq. (44) may be determined from Eqs. (36) and (40) as some function of the
equivalent stress and of the variable ye through the creep curves and stress-creep failure time data that
are obtained from basic experiments. For example, one may write

_o � w�se �ÿ
1ÿ o

o�
�q �45�

Here w�se� is some function of the equivalent stress, and q is a temperature dependent material
parameter. As it was established (Rubanov, 1987; Zolochevsky, 1991; Altenbach et al., 1995; Betten et
al., 1998) for various polycrystalline materials under uniaxial and multiaxial loading, one can take in
Eq. (45) w�se� � v�se�se and m � q: Using then Eqs. (15), (16) and (32), it is not di�cult to obtain the
following equation:

_o � _eese �W �46�
Thus, the rate of change of the scalar damage parameter is equal to the speci®c energy creep dissipation
rate.

The equality (46) may be used for identi®cation of the scalar damage parameter o � o�t� and its
critical value o� at the instant of failure with creep in basic experiments with constant stress and
constant temperature. For example, for the case of uniaxial tension with s11 6� 0, one obtains

o � s11e11 �47�
and

o� � s11e�11 �48�
Analogously, the relations for the case of uniaxial compression with s11 6� 0 are given by:
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o � s11e11 �49�
and

o� � s11e�11 �50�
Considering pure torsion with s12 6� 0, one has the following relations:

o � 2s12e12 �51�
and

o� � 2s12e�12 �52�
Here e�11 and 2e�12 are critical values of the creep strain corresponding to creep rupture in basic
experiments under discussion.

Finally, by considering the heat received by conduction through the boundary of the body, one
assumes the existence of a thermal dissipation potential in the following form:

F3 � 1

2
d0g � g �53�

and

ÿq

T
� @F3

@g
�54�

Here q and g are the heat ¯ux vector and its dual variable, and d0 is a scalar parameter. In this work, g
is given by

g � grad T �55�
According to the normality rule given by Eq. (54), one obtains the following relation by using Eqs.

(53) and (55)

q � ÿd0T grad T �56�
Assuming that

d0 � k0
T

�57�

one may express q as follows:

q � ÿk0 grad T �58�
where k0 is the coe�cient of thermal conductivity. It is seen that the derived Eq. (58) is the classical law
of heat di�usion or Fourier's law.

One may now write the second principle of thermodynamics to ensure the validity of the model
proposed here. In this regard, one uses the Clausius±Duhem inequality:

F � sss � �Çeeeÿ y � � _oÿ g � q

T
r0 �59�

Using Eqs. (15) and (16), one can express the ®rst term in (59) as follows:
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sss � �Çeee � se_eer0 �60�
Considering Eqs. (1), (12) and (44), and condition n � n � 1, one can rewrite the second term in Eq.

(59) as:

ÿy � � Çooo � o _o
o�

r0 �61�

Using Eqs. (55) and (58), one can ®nally express the third term in Eq. (59) as follows:

ÿg � q

T
� k0

T
jgrad Tj2r0 �62�

Thus, within the proposed creep damage model the second thermodynamic principle is always valid.

5. Basic experiments

One now considers a procedure for the determination of the material parameters in the proposed
constitutive equation of creep Eq. (31) and the damage evolution equation Eq. (44) together with Eqs.
(32) and (46) as well as for identi®cation of the functions _ee and _o: To do this, one needs the results of
the basic experiments for di�erent values of constant stress at constant temperature on standard
specimens in which a homogeneous stress state is realized. In this case, one does not need to use
Fourier's law given by Eq. (58), the entropy density given by Eq. (9), and the ®rst principle of
thermodynamics. The temperature ®eld is given in the case under consideration, and consequently, one
does not need to use the ¯ux.

One assumes that for the case of uniaxial tension with s11 6� 0, one has the following relations:

_e11 � K�sk11ÿ
1ÿ o

o�
�m �63�

and

_o � K�sk�111ÿ
1ÿ o

o�
�m �64�

Considering uniaxial compression with s11 6� 0, one obtains

_e11 � ÿ Kÿjs11jkÿ
1ÿ o

o�
�m �65�

and

_o � Kÿjs11jk�1ÿ
1ÿ o

o�
�m �66�

Analogously, the relations for the case of pure torsion with s12 6� 0 are given by:

2_e12 � K0sk12ÿ
1ÿ o

o�
�m �67�
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and

_o � K0sk�112ÿ
1ÿ o

o�
�m �68�

Here K�, Kÿ, K0, m, and k are temperature dependent material constants. It is seen that the powers m
and k do not depend on the type of loading. This fact was experimentally established (Zolochevskii,
1982; Rubanov, 1987; Zolochevsky, 1991; Altenbach et al., 1995) for various polycrystalline materials
under consideration. It was also established (Rubanov, 1987; Zolochevsky, 1991; Altenbach et al., 1995;
Betten et al., 1998) that Eqs. (63)±(68) describe well the creep deformation of various damaged materials
under uniaxial tension, uniaxial compression, and pure torsion.

On the other hand, one can use Eqs. (31), (32), (44) and (46) to write the relations describing creep
and creep damage in these basic experiments. Since the unit vector n does not represent a measurable
quantity, one will assume that microcracks in the material are always orthogonal to the direction of the
maximum principal stress. One can also take the power function (33) for representation of the functions
_ee and _o given by Eqs. (32) and (46).
One notes that di�erent indirect methods for identi®cation of the orientation of microcracks in the

material under multiaxial loading were discussed by Chaboche (1993).
Under uniaxial tension �s11 > 0� microcracks propagate perpendicular to the axis of loading. In this

regard, the orientation of microcracks is represented by the vector n � �1, 0, 0�T: Therefore, the
components of the damage tensor given by representation (1) can be expressed for the case of uniaxial
tension as follows:

o11 � o, o22 � o33 � o12 � o13 � o23 � 0 �69�
Then it is not di�cult to obtain from Eqs. (31)±(33), (44) and (46) the following relations:

_e11 �
ÿ �������������

A� C
p � aB

�k�1
sk11ÿ

1ÿ o
o�
�m �70�

and

_o �
ÿ �������������

A� C
p � aB

�k�1
sk�111ÿ

1ÿ o
o�
�m �71�

Comparing Eqs. (63) and (70) and (64) and (71), one hasÿ �������������
A� C
p � aB

�k�1� K� �72�
In the case of uniaxial compression �s11 < 0� microcracks form and propagate parallel to the axis of

compressive loading. Therefore, one has n � �0, 1, 0�T: Taking into account the representation (1) for the
damage tensor, one obtains

o22 � o, o11 � o33 � o12 � o13 � o23 � 0 �73�
Then one can rewrite Eqs. (31)±(33), (44) and (46) for this stress state as follows:

_e11 � ÿ
ÿ �������������

A� C
p �k�1js11jkÿ

1ÿ o
o�
�m �74�
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and

_o �
ÿ �������������

A� C
p �k�1js11jk�1ÿ

1ÿ o
o�
�m �75�

Equating the expressions, given in Eqs. (65) and (74) and (66) and (75), one obtainsÿ �������������
A� C
p �k�1� Kÿ �76�

Under pure torsion in the 1±2 plane �s12 6� 0), microcracks run at an angle of p=4 with respect to axes
1, 2. Therefore, the orientation of microcracks is represented by the vector n � � 1��

2
p , 1��

2
p , 0�T: In this

regard, the components of the damage tensor are de®ned as:

o11 � o22 � o12 � 1

2
o, o33 � o13 � o23 � 0 �77�

Then it is not di�cult to obtain from Eqs. (31)±(33), (44) and (46) for the case under consideration the
following relations:

2_e12 �
ÿ ������

2C
p � aB

�k�1
sk12ÿ

1ÿ o
o�
�m �78�

and

_o �
ÿ ������

2C
p � aB

�k�1
sk�112ÿ

1ÿ o
o�
�m �79�

Equating Eqs. (67) and (78) and (68) and (79), yields the following expressionÿ ������
2C
p

� aB
�k�1� K0 �80�

It is not di�cult to determine from (72), (76) and (80) the material parameters as follows:

aB � K
1

k�1
� ÿ K

1
k�1ÿ ,

������
2C
p

� K
1

k�1
0 ÿ aB, A � K

2
k�1ÿ ÿ C �81�

6. Particular cases

One now considers various particular cases resulting from the constitutive relation of creep given by
Eq. (31) and from the damage evolution law given by Eq. (44) together with Eqs. (32), (33) and (46).
The data of the basic experiments are used together with Eq. (81).

One now assumes that from the basic experiments one obtains

Kÿ � K�, K0 � 3
k�1
2 K� �82�

Substituting Eq. (82) into Eq. (81), one arrives at the following relations
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a � 0, C � 3

2
K

2
k�1
� , A � ÿ1

3
C �83�

The equivalent stress given by Eq. (21) can now be rewritten on the basis of the stress intensity given
by Eq. (24), i.e.

se �
�������
2

3
C

r
si �84�

while the proposed Eqs. (31) and (44) together with relations (32), (33) and (46) become

Çeee �

� �������
2
3C

q
si

�k

ÿ
1ÿ o

o�
�m �������

3

2
C

r
s

si
�85�

and

Çooo �

� �������
2
3C

q
si

�k�1

ÿ
1ÿ o

o�
�m n
 n �86�

The resulting Eqs. (85) and (86) correspond to the traditional equations for isotropic materials which
are insensitive to the loading type. In this regard, the equalities in Eq. (82) are recommendations for
using Eqs. (85) and (86) which do not account for the di�erent creep behavior in tension±compression,
the di�erent damage development in tension±compression, and the independent creep law and
independent damage law of isotropic materials under conditions of pure torsion. Non-existence of even
one of the equalities in Eq. (82) shows the impossibility of using Eqs. (85) and (86).

One assumes that the following data are obtained from the basic experiments

Kÿ � K�, K0 6� 3
k�1
2 K� �87�

Using Eq. (81) together with Eq. (87), one arrives at the following relations

a � 0, C � 1

2
K

2
k�1
0 , A � K

2
k�1
� ÿ 1

2
K

2
k�1
0 �88�

Then the equivalent stress given by expression (21) takes the form

se � s2 �89�

while the proposed Eqs. (31) and (44) together with relations (32), (33) and (46) are given as follows:

Çeee � sk2ÿ
1ÿ o

o�
�m�AI1I� Csss

s2

�
�90�

and

Çooo � sk�12ÿ
1ÿ o

o�
�m n
 n �91�
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In order to describe the behavior of these isotropic damaging materials with the same properties in
tension and compression, one needs to use creep and damage characteristics in tension and torsion.

One assumes that from the basic experiments one obtains

Kÿ 6� K�, K0 �
�ÿ ���

3
p
ÿ 1

�
K

1
k�1ÿ � K

1
k�1
�

�k�1
�92�

Substituting Eq. (92) into Eq. (81), one obtains the following relations:

aB � K
1

k�1
� ÿ K

1
k�1ÿ , C � 3

2
K

2
k�1ÿ , A � ÿ1

3
C �93�

Therefore, the equivalent stress given by Eq. (21) may be expressed as follows:

se �
�������
2

3
C

r
si � as1 �94�

while the proposed Eqs. (31) and (44) together with relations (32), (33) and (46) can be rewritten as:

_e � skeÿ
1ÿ o

o�
�m
 �������

3

2
C

r
s

si

� aBn
 n

!
�95�

and

Çooo � sk�1eÿ
1ÿ o

o�
�m n
 n �96�

It is clear that in order to describe creep and creep damage on the basis of Eqs. (95) and (96), it is
necessary to use test data and damage data obtained from tension and compression tests. One also notes
that Eq. (93) is a condition for the use of Eqs. (95) and (96) for practical purposes.

One now assumes the following data are obtained from basic experiments

Kÿ 6� K�, K0 6�
�ÿ ���

3
p
ÿ 1

�
K

1
k�1ÿ � K

1
k�1
�

�k�1
�97�

Obviously, this case is the most general case of material behavior during creep that is related to
independent creep laws and damage laws for isotropic materials under tension, compression, and
torsion. The creep behavior of these isotropic damaging materials can be described by the proposed Eqs.
(31) and (44) together with relations (32), (33) and (46). The appropriate material parameters to be used
in Eqs. (31) and (44) may be found from Eq. (81).

The above discussion for the particular cases of the evolution Eqs. (31) and (44) together with
relations (32), (33) and (46) is summarized in Table 1.

7. Comparison of theoretical and experimental results

The model presented earlier in this paper is used in this section to predict the creep behavior under
uniaxial nonproportional and multiaxial nonproportional loading, and under nonisothermal conditions.
The corresponding theoretical results are compared with experimental results. The model parameters are
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®rst determined using the data from the basic experiments under uniaxial tension, uniaxial compression,
and pure torsion for di�erent values of constant stress at constant temperatures.

One considers the creep behavior of the aluminum alloy AK4-1T (Rubanov, 1987). The chemical
composition of this material is 2.2Cu, 1.6Mg, 0.55Ni and 0.015Ti in weight percentages. Test specimens
were taken from a plate with a thickness of 40 mm. One assumes that the plate material has three
orthogonal directions of initial anisotropy and the stress axes coincide with the principal axes of
anisotropy. Creep tests were conducted on specimens taken from the three principal directions of the
plate as well as on specimens oriented at an angle of p=4 with respect to the longitudinal and transverse
directions. Basic experiments in the normal direction of the plate were conducted on cylindrical
specimens with a diameter of 12 mm and a gage length of 20 mm. All other test specimens were thin-
walled tubes with an outside diameter of 20 mm, a wall thickness of 1 mm and a gage length of 35 mm.
The initial isotropy of an aluminum alloy AK4-1T at temperatures of 423 K and 448 K was established
according to Rubanov (1987).

Creep curves of the given material under uniaxial tension, uniaxial compression, and pure torsion for
di�erent values of constant stress at constant temperatures can be described on the basis of relations
(63)±(68) with the values for the material constants taken as:

k � 13, m � 3:5, K� � 1:67� 10ÿ35 MPaÿk hÿ1

Kÿ � 3:3� 10ÿ36 MPaÿk hÿ1, K0 � 6:56� 10ÿ32 MPaÿk hÿ1 �98�
at a temperature of T � 448 K, and

K � 25, m � 3:5, K� � 1:05� 10ÿ65 MPaÿk hÿ1

Kÿ � 8:43� 10ÿ67 MPaÿk hÿ1, K0 � 5:84� 10ÿ59 MPaÿk hÿ1 �99�
at a temperature of T � 423 K. It is seen from experimental data given in Eqs. (98) and (99) that
material constant m does not depend on the temperature.

Table 2 provides the experimental values o� of the scalar damage parameter at the instant of failure
in creep under uniaxial tension, uniaxial compression, and pure torsion, given by relations (48), (50) and
(52), respectively. It is seen that the critical value o� varies from 10.0 to 38.2 MJ/m3. Thus, usually used
condition (Zolochevsky, 1991) o� � const is not true for the aluminum alloy under consideration. It is
also found from the basic experiments (Table 2) that the amount of the damage at the instant of failure
in creep can be de®ned as follows:

o� � s2i �aÿ bI1 � �100�

Table 1

Particular cases of evolution Eqs. (31)±(33), (44) and (46)

Equations Experimental values for material constants

K� Kÿ K0

(31)±(33), (44), (46) K� Kÿ K0

(85), (86) K� K� � ���
3
p �k�1K�

(90), (91) K� K� K0

(95), (96) K� Kÿ �� ���
3
p ÿ1�K

1
k�1ÿ � K

1
k�1
� �k�1
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where

a � 4� 10ÿ4 MPaÿ1, b � 4� 10ÿ7 MPaÿ2 �101�
Thus, the critical value o� of the scalar damage parameter depends on the type of loading, but does not
depend on the temperature. By considering the unique scatter of test data for creep, particularly marked
at the instant of failure, the agreement of the theoretical and experimental results in Table 2 may be
considered satisfactory.

As can be seen from relations (98) and (99), at the same absolute value of the stress intensity given by
Eq. (24) and at any given time, the creep strain intensity

ei �
�������������
2

3
z � �z

r
�102�

was largest under pure torsion and smallest under uniaxial compression. This also indicates the largest
degree of the creep damage in pure torsion. Here

z � eeeÿ 1

3
e0I �103�

is the creep strain deviator, and

e0 � eee � �I �104�
is the volumetric creep strain. Note also that for aluminum alloy AK4-1T at a temperature of 448 K,
the di�erence in the creep strain rate between tension and compression even in the secondary stage is
®ve times while at a temperature of 423 K the di�erence is 12.5 times. The creep behavior of this
material in the tertiary creep phase is characterized by greater dependence on the loading type.

It is possible to describe the experimental data in Eqs. (98) and (99) by the following relations:

k � k1T� k2, m � 3:5, K�=Q � exp�a�T� b��

Kÿ=Q � exp�aÿT� bÿ�, K0=Q � exp�a0T� b0� �105�

Table 2

Comparison of experimental and theoretical values of the scalar damage parameter at the instant of failure for an aluminum alloy

AK4-1T in basic experiments at various states of stress and for various temperatures

T (K) s11 (MPa) s12 (MPa) o� (MJ/m3)

Experiment Theory

423 250.0 0 17.6 18.8

423 260.0 0 18.5 20.0

423 270.0 0 26.0 21.3

448 200.0 0 10.0 12.8

448 226.0 0 14.8 15.8

423 ÿ290.0 0 38.2 43.4

448 ÿ230.0 0 25.2 26.0

423 0 155.0 31.0 28.8

448 0 117.5 18.0 16.6
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where

Q � 1 MPaÿk hÿ1, k1 � ÿ0:48 Kÿ1, k2 � 228:04, a� � 2:78166 Kÿ1, b� � ÿ1326:26

aÿ � 2:81769 Kÿ1, bÿ � ÿ1344:02, a0 � 2:49144 Kÿ1, b0 � ÿ1187:97 �106�
One now considers the experimental data for this aluminum alloy under nonproportional loading
conditions. Thin-walled tubular specimens with an outside diameter of 20 mm, a wall thickness of 1
mm, and a gage length of 35 mm are subjected to nonproportional loading by an axial (tensile or
compressive) force together with (or without) torque.

First, one considers the creep behavior of the aluminum alloy under uniaxial nonproportional loading
in isothermal process (Fig. 1(a) and (b)) at a temperature of 423 K and in nonisothermal processes
(Figs. 2(a)±(c) and 3(a)±(c)). Circles in Figs. 1(b), 2(c) and 3(c) represent results of the tests for the
aluminum alloy under consideration in the form of dependence oÿ t for various values of the stress
s11�t� and temperature T(t ). Here solid line corresponds to computed data on the basis of Eqs. (31)±
(33), (44), (46), (81) and (100) with the values for the materials parameters given in relations (101), (105)
and (106). One assumes that microcracks form and propagate perpendicular to the axis of the specimen
for the loading program presented in Fig. 1(a) and parallel to the axis of the specimen in the cases of
nonproportional loading considered in Figs. 2(b) and 3(b).

Next, one considers the creep behavior of the aluminum alloy under multiaxial nonproportional
loading in nonisothermal process considered in Fig. 4(a). Thin-walled tubes were subjected to torque
according to the program presented in Fig. 4(b), while an axial loading considered in Fig. 4(c) was
applied simultaneously. Results of this test are represented in Fig. 4(c) in the form of dependencies e11 ÿ

Fig. 1. Growth of damage variable o11 � o for aluminum alloy AK4-1T at a temperature of 423 K (b) under nonproportional uni-

axial tension for the loading program (a).
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t (circles) and 2e12 ÿ t (triangles) for various values of stresses s11�t� and s12�t� and temperature T(t ).
Solid and dashed lines correspond to results of calculations using Eqs. (31)±(33), (44), (46), (81) and
(100) with the values for the materials parameters given in relations (101), (105) and (106); hence, axial
strains and shear strains are indicated by the dashed line and the solid line, respectively. One assumes
that microcracks in the case under consideration are orthogonal to the direction of the maximum
principal stress. Thus, one can take

n � �n1, n2, 0�T �107�
where

n1 �
���������������������������������������������
1

2

 
1� s11���������������������

s211 � 4s212

q !vuut , n2 �
���������������������������������������������
1

2

 
1ÿ s11���������������������

s211 � 4s212

q !vuut �108�

Fig. 2. Growth of damage variable o22 � o for aluminum alloy AK4-1T (c) in nonisothermal process (a) under nonproportional

uniaxial compression for the loading program (b).
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By considering the unique scatter of test data for creep, particularly marked in the third stage, the
agreement of the theoretical and experimental results under uniaxial nonproportional and multiaxial
nonproportional loading, and for both isothermal and nonisothermal conditions may be considered
satisfactory.

8. Conclusions

A creep damage analysis is proposed for the initially isotropic polycrystalline materials with di�erent
behavior in tension and compression, and without creep hardening. Creep damage in the materials
under consideration is associated with the dislocation creep, and nucleation and growth of parallel ¯at
microcracks. The classical thermodynamics of irreversible processes is used to describe di�erent creep
properties in tension and compression, damage induced anisotropy, and di�erent damage development
in tension and compression. The second-order damage tensor and scalar damage parameter is

Fig. 3. Growth of damage variable o22 � o for aluminum alloy AK4-1T (c) under nonproportional uniaxial compression con-

ditions (b) and in nonisothermal process (a).
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introduced to account for the creep damage. The equation for creep deformation and equation for
damage evolution is derived.

The theoretical results have been compared with the experimental results under uniaxial
nonproportional and multiaxial nonproportional loading. The model parameters are ®rst determined
from basic experiments under uniaxial tension, uniaxial compression, and pure torsion for di�erent
values of constant stress at constant temperatures. A good correlation is obtained between the results
generated from the model and the experimental data of the creep on thin-walled tubular specimens
subjected to an axial (tensile or compressive) force together with (or without) torque. The material

Fig. 4. Creep curves for aluminum alloy AK4-1T (d) obtained for nonproportional loading of the specimen that was subjected to

torque according to the program (b) and to axial loading (c), and in nonisothermal process (a).
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under consideration is the aluminum alloy under nonproportional loading in isothermal and
nonisothermal conditions.

The description of a set of the additional physical phenomena occurring in polycrystalline materials,
such as creep hardening, Bauschinger-type e�ect, cyclic creep, various memorization e�ects, etc. will be
discussed in a forthcoming paper.
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